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ABSTRACT hf distance from the urndeformed anvil face to the
phase I portion of the plastic wave front at

In this paper, a simple theoretical analysis of an the conclusion of the event
old problem is presented. The analysis Is more I undeformed section length
complete than earlier versions, but retains the
*athematical simplicity of the earlier versions. The 7 undeformed section length at the end of Phase I
major thrust is to separate the material response into I final undeformedspecimen length
two phases. The first phase is dominated by strain f

rate effects and has a variable plastic wave speed. L original specimen length

The second phase is dominated by strain hardening
effects and has a constant plastic wave speed. L final specimen length
Estimates for dynamic yield Stress, strain,

strain-rate, and plastic wave speed during both phases s displacement of the rear end of the specimen
are given. Comparisons with several experiments on
OFHC copper are included. s displacement of the rear end of the specimen at

the end of Phase I

NOTATIO 5 f final displacement of the rear end of the specimen

A0 cross-sectional area of the undeformed specimen t time

i time at the end of Phase I
A cross-sectional ares of the deformed specimen t torminaf time

D diameter of the undeformed specimen f

u speed of the plastic materTsl at the plastic wave
D diameter of the mushroom at the conclusion of front

phase I deformation
v undeformed section speed

D diameter of the interface between Phases I and II SV impact speed
D diameter of the interface between Phases I and II

after conclusion of the event V volume of the material In the Phase I deformation

D diameter of the mushroom at the conclusion of zone
event y2  average flow strength durinL secondary deformation

C engineering strain eg secondary plastic wave spoto..e

Sengineering strain at the end of Phase I o engineering stress

h distance from the undeformed anvil face to the P mass density of specimen
plastic wave front differentiation with respect to time

Sdistance from the undeformed anvil face to the

plastic wave front at the end of Phase I
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INTRODUCTION speed vO. The plastic deformation of the rod proceed,

in two phases: the primary, or Phase I deformation
In the 1940's engineers and scientists began to phase, which is dominated by strain rate effects and

probe the dynamic mechanical properties of materials high plastic wave speed end the secondary, or Phase II
using the high speed impact of a cylindrical specimen deformation phase, which is probably dominated by work
against a massive anvil. This test is nov usually hardening effects.
called the Taylor impact test or the Taylor anvil test The classic Taylor [I) equation of motion of the
after Sir Geoffrey Taylor who published the first undeformed section of the specimen has been modified by
analysis of it (1). Taylor approximated the complex the authors to account for mass transfer across the
real situation as a one-dimensional problem in which plastic wave front. The modified equation is given by
any effects of radial motion were assumed to be
negligible. He also approximated the complex
constitutive behavior of the specimen as simply a C v + I(v-u) -

rigid, perfectly plastic material.
During the * intervening years very many

investigators have attempted to improve upon the where v is the current speed of the undeformed section,
original Taylor analysis. Either the mechanical f is the current undeformed section length, o is the
equations used were made more accurate or the engineering stress at the plastic wave front, a is the
constitutive description of the material was made more engineering strain at the plastic wave front, and u is
complex. And sometimes both approaches were used the particle velocity of the plastic material
simultaneously. To date, however, there has been no immediately inside the plastic wave front. Notice that
improvement to the Taylor theory that has achieved under the assumption of constant volume deformation the
wide-spread acceptance. In most laboratories where the engineering true strain a is given by a - AO/A - 1.
Taylor test is performed, it is interpreted using Superimposed dots denote differentiation with respect
Taylor's original theory. to time, t. Equation (1) is valid during both phases

Beginning about 1960 there have been various of the deformation process.
computer codes written that can provide a more-or-less The characterization of each distinct, phase is
complete analysis of a Taylor impact test, providing determined by assumptions regarding the plastic wave
the material constitutive relation is known, front notion and the particle velocity, u, inside the
Nevertheless, simplified approximate analyses of the wave front. During Phase I, the particle velocity of
type originally offered by Taylor still have practical the plastic material is determined by the anvil
utility. They provide the means for a relatively fast compliance, the specimen material, the impact velocity,
and economical interpretation of test results. Also, and the current speed of the undeformed section. At
they can provide a certain degree of insight into the the same time, the plastic wave speed is basically a
effects various test parameters produce on the final function of these same quantities during this phase.
results. For those reasons, yet another Evidently, both the particle velocity behind the
one-dimensional analysis of the Taylor impact test is plastic wave front and the plastic wave speed are
presented here. complicated functions of the determining variables.

This current analysis is based upon observations However, within the context of this the Eulerian
emphasized by Bell 12) in 1960. Bell's experimental plastic wave speed will be approximated in an
work on rod impact led him to the conclusion that there elementary way and the anvil compliance will be
was a brief, initial phase of the plastic deformation neglected entirely. The particle velocity behind the
entirely different from the subsequent specimen plastic wave front will be developed from some simple
response. Here Bell's conclusion is taken as mechanical considerations.
justification for a one-dimensional, but two-phase,
analysis of the Taylor test. This present analysis
follows the same general lines as an earlier one phase
theory (31.

The differences introduced here can be summarized
fairly easily. During Pha.e I, the rigid, plastic
yield strength is allowed to be different from Phase
II, the plastic wave speed (assumed constant in Phase
I) is a time-dependent function, and the material
particle velocity u is time-dependent. Taylor [1)
approximated this particle velocity as zero throughout
the entire deformation process. In this analysis the
particle velocity is taken to be nonzero throughout the
event.

The Phase II analysis is similar to that given
earlier [31. However, during Phase II deformation, the
particle velocity u is taken to be proportional to the
current undeformed section speed v.

It to believed that the two phase model provides
for a more accurate basis for the analysis of the
Taylor Test. Yet. the present system of equations is
not a lot more complicated than that given earlier (31 Figure 1. Schematic view shoving a Taylor impact
or Taylor's original theory [11. specimen of original length L which

THEORY undergoes plastic deformation.

Consider a uniform cylindrical rod of mass density
# which impacts a rigid anvi n-a~ly a&-id with initial
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In Figure 1. the reader will note that h denotes
the current observable position of the plastic wave
front relative to the anvil surface. From typical film Un 0 a A
data collected on OFHC copper rods impacted against a
steel anvil in the Materials Testing LAboratory at
9glin Air Force base. Florida 14). it was noted that Aa
the plastic wave motion relative to the original anvil
surface to linear after the first few microseconds of .
the event, as shown in Figure 2 excerpted from (4].

.1'I I

Sso

Figure 3. Graph ahowing the position of the
plastic wave front relative to the

*Sseoundeformed anvil face. E and h are

"I Idistances of the plastic wave front from
0 * *to *** I s s 0 g $ the anvil face at the end of Phase I and

t0 as 50 60 ,O •o at the end of the event, respectively.

t and tg are the interface and terminal

times, respectively.

Figure 2. Graph taken from Molitoris 14] showing The kinematical analysis in this problem consists
measurements of actual film data of adding the current lengths in Figure I to obtain
compiled during the impact of an OFHC
copper specimen impacting a steel anvil. t + a + h - L (5)
This data indicates that after the first
few microseconds the Eulerian plastic which is valid during both phases of the
wave speed is constant. deformation. Differentiation of (5) gives

However, in the first few microseconds, the
plastic wave is much higher than the later *steady + h - + v + I - 0 (6)
state" value and the motion is quite nonlinear.
Motivated by these observations, we are lead to which also is valid during both phases of the
consider

deformation. During Phase I1, A. - , which reflects
the constant wave front speed observed in Figure 2.

hotn. 0 s t s t A conservation of mass relation for the plastic
material can be developed by equating the distances in

(t) - (t-) + h. t S t -5 t (2) Figure 3. This leads to

a I - v - u (7)

where E and t are the distance of the plastic wave This is a fundamental equation in our further analysis.
front and the time at the end of Phase L. h0 and n are

positive constants with 0 < h < I, and for that reason "1.i
h is a continuous function of time. Applying (2) at

time g gives L J a.

h- hn (3)

When the event reaches conclusion, h - hf and t - t,, r .a-.t - .a -

which means that '

tC-a

Figure 4. Schematic illustration of the rear

portion of the projectile. duri?! the
time interval br, th- Itro.- Of the
indicated section is displaced a
distance uat, while the rear is
displaced vat.
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A,

PHASE I DEFORMATION

The initial deformation phase is characterized by T
rapid mushroom growth. During this deformation, it has
been observed from film data on OFHC copper specimens
that there is virtually no change in the velocity of
the undeforued section [5). Thus, we are motivated to

assue that v - v 0 and v - 0 throughout Phase I. This

reduces equation (1) to

aA
S(v0 - u) - pl(8) Figure 5. Idealized Phase I deformation of a rod

impact specimen. The mushroom region is
during the primary deformation stage. Also, equation approximated by a cylindrical section of
(6) reduces to attitude h.

1-- (v 0 ,+ ) (9)
Notice that • can be eliminated from (13) by means of

Combining this equation with (7) gives (10). allowing A to be expressed as

v0 - u v0 +h
- (10) A - A0  (14)

vo0+h u+h

and V to be expressed as

for the time dependent strain directly behind the

plastic wave front. Eliminating I and * in (8) with v
(9) and (10) leads to an expression for the time V - A h 0 + (15)
dependent stress during the Phase I deformation. u +

a - - P (u + h) (v 0 - u) (11) However, the volume of the material in the plastic

where h must be specified from (2) for t s 1 and u ill. deformation zone must equal the volume of the material

be determined subsequently. Notice that because 0 < n lost by the undeformed section. This means that

< 1, h is singular at t - 0. This means that the V - A0 (L-t) - A0 (s+h) - A0 (v 0 t+h) (16)
calculated stress is infinite at t - 0. Evidently, the

stress is not infinite at impact. This conclusion is
the result of the infinite propogation rate for the where s - v0 t during Phase I deformation and

plastic wave front predicted by (2) at impact. The equation (5) has been used to eliminate t. By
propogation rate is initially very high, but not equating (15) and (16), we obtain
infinite.

The particle velocity u is generally a complicated Vo +

function of t. For this analysis, we will assume that h - - v0 t + h (17)
it can be estimated in a very simple way. Suppose that u + 0

the mushrooming region can be approximately represented
by a cylindrical section (see Figure 4) with volume This equation can be used to find u.

V-Ah (12) u-v 0  t h - (18)

V( v0 t + h

where This relation gives the particle velocity of the

material directly behind the plastic wave front as a
A - A0 / (1 + e) (13) function of time. Since we have assumed that the

particle velocity of the plastic material is uniform,
In these equations, h is the current position of the this relation and (10) gives us the cross-sectional

plastic wave front. A is the current mean area of the mushroom as a function of time.
cross-sectional area of the mushroom, and A0 is the Observing that h - hr ui•PaeI eue

original cross-sectional area of the specimen. (18) to uc

u - v 0 h0 (1-n)(vot1-n -O)1 (19)

Notice that the initial particle velocity is given by
u(O) - v0 (l-n) and u decreases as Phase I deformation

proceeds, as shown in Figure 6.
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PHASE II DEFOMATInN

As indicated earlier, secondary plastic
deformation Is assumed to begin when the Eulerian

plastic wave speed h reaches some value, say 1. During
Phase II it is assumed to remain constant at this
value. There will be a monaero particle velocity u
during this deformation. This particle velocity may be
roughly assumed to follow the profile of the undeformed
section speed during Phase 1I deformation. When the u
curve has this type of profile, the secondary geometry
for recovered specimens has the correct curvature (see

L- Figure 8). Motivated by this, we are led to postulate
a constant k such that

u -k v (21)

Figure 6. A typical particle velocity curve, as for i s t s t . This constant will be determined In
predicted by the theory. The particle
velocity at impact is given by u 0 - v 0  the course of the subsequent sanalysis.

(2-n) and decreases with time during
Phase I deformation.

Equation (19) allows us to evaluate the
time-dependent scrain e in the cylindrical mushrooming I
region.

• - -v 0 (v 0 t-n + nho)(votl-n + ho0 ) (V0 + nh 0 t'- )" I

(20) -
Notice that the strain on impact is equal to zero and
increases (compressively) as Phase I continues. The
mushroom growth can be estimated from (20). but cannot /1 / / / // / // / / // /
be compared directly to the radial growth curve at the
anvil interface. However, a favorable comparison can
be achieved by taking the current volume of the
mushroom region from (15) and replacing this cylin- Figure 8. Idealized deformation geometry after
drical section with a conical frustrum (see Figure 7). Phase 11 begins. Notice the curvature
This produces a somewhat better approximation to the of the Phase II deformation zone-
radial groWLh curve at the anvil interface, but still
underestimates the experimental observations. When the deformation reaches Phase II, equation
Nevertheless, this elementary theory for Phase 1 (6) becomes
deformation qualitatively agrees fairly well with the
experiment. - v) (22)

I
SCombining this with equations (7) and (21) leads to an

expression for the strain

. - -(l-k) v (23)

Suppose that the average dynamic compressive yield
Si1Istress during secondary deformation is o - -Y 2 ' Then,

equation (1) becomes

I V + (1-k) I v (24)

Figure 7. A schematic view of the cylindrical P -÷k-V

mushroom section with a conical frustrum
approximation to the volume contained in Using the chain rule of differ4sitiation, and (22) to

the cylinder. At the anvil-specimen
interface the actual mushroom (dashed replace •, equation (24) transforms to
curve) should have larger radius than
the base of the conical frustrum and a I dv
much larger radius than the cylindrical - A 2/ - (1-k) v - fry) (25)
section. Each has the same height and
volume.
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As the right hand side is a function of v only, this POST-TEST MEASUREDENTS AND ESTIMATES
equation has separable variables. The separation and
subsequent integration lead to Figure 9 shove a profile view of a typical OFNjC

copper specimen which has been impacted against a 4340
1 steel anvil with an initial speed of 187 r/s. Beside

2Y/ (1-k) the deformed specimen is an~ undeformed specimen of the
I same Initial dimensions. Notice the distinct curvature

a-a 1 1  change which occurs at the interface between Phases 1
Y2 /p-)(l-k)v-k(l-k)v and II (see Figure 10).

1

1q
q-A(1K) q+.(l-k) + 2k(l-k) v j (26)

[qi.(1-k) q-%(1-k) - 2k(l-k) v

where q2 A 2 (1-k)2 + 4 Y2 k (1-k)/p,
v - k 1)0 > , and I is the final

undeformed section length. This equation expresses a
as a function of v. When (26) and (22) are used in
(24). we again find a separable differential equation.
This equation has separable variables in velocity and
time.

Sv-- (A + v) f(v) (27) J.

where P(v) is given by equation (25). Integration
of (27) gives

tI dv h h (28)f/ - 0 t x+v)/ (v)

This equation gives the time as a function of the Figure 9. Profile view of actual undeforued and
currenuativelocity e the u idefor adfsection Phathe deformed specimens. Note the dramatic
current velocity of the undefr~med section during Phase curvature change that occurs between the
II deformation. primary and secondary plastic

Another integral of (27) is available through the deformation zones. For the deformed
change of variables v - v dv/ds, but this integral is specimen v 0 - 187 m/s, L - 38 mm, and
algebraically dependent on (26) and (28). We will not

pursue the integration of (27) any further. D - 7.5 mm.

The last equation for the analysis of Phase II A £
deformation is based on a kinematic analysis of Figure
8, using the assumption that the particle velocity of
the plastic material Is approximately uniform during
khase II deformation. Notice that the plastic wave
front has reached a position R from the anvil surface
at the end of Phase I and then travels to h at the

conclusion of the event. This distance can be Lapproximatted by

; f Ju dt (29) 31

t/

By using (21). the equation can be reduced to

Sf - k (A f- a) - k(sf - v0 t) (30) Figure 10: Schematic view of undeforued and

The constant of proportionality k can be determined deformed specimens. showing post-test
fromth is equtanotion.measurements. Phases I and II have been

from this equation. labeled. For the actual deformed
specimen shown in Figure 9, L - 28.68

M, f- 11.68 M, and h - 2.67 -m.
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Figure 10 Is a schematic view showing the - L (1 - V (32)
post-test measurements. Prior to testing, the 0
undeformed length L and cross-sectional area A0 have0wher 0 sheoleofteudorespien

been measured. After impact, the overall specimen 0

length L , the length of the primary deformation region This estimate for the undeformed section length at the
end of Phase I is quite sound.

a end the remaining undeformed length I are

measured. Additionally, D and D , the diameter of the RESULTS

specimen Interface and the mushroom diameter, are The two-phase theory presented in the previous
measured. sections provides for a useful interpretation of the

Ve will now obtain an estimate for I based on an Taylor impact test. In this section, we show how the

elementary estimate for the volume of the mushroom. post-test measurements can be used in the theory to

Observe, from Figure 9,that the mushroom can be well predict dynamic yield stresses and plastic wave speeds.
approximated by the frustrum of a cone. Estimates of We will deal with each phase separately, beginning
this type do not originate with us (see (81 or (91), with Phase 11.
but, within the context of this paper, they are new. Certain key variables may be assumed to be

In terms of the diameter of the mushroom D and the continuous at the Interface between the phases end the
values of these variables are usasmd to be leawn. *,

interface diameter b. the volume of the material In

D b. e, and v are all assumed to be continuous at t - i.

the Phase 1 deformation zone at the end of the event is From the post-test measurements, we can produce a very

S3-3 reliable estimate for Z by equation (32). We know that

2 -I D2  1 - Df ID, (31) ; - vj and R - L - 1 1. Hence, when V is known, all

V f Df I - Df/D f of the appropriate lengths and displacements are known.

We have reason to believe that I is roughly constant

An interesting observation can now be made for impacts involving the same material against the
regarding the Phase I deformation tone. The mushroom
region undergoes considerable deformation after the same anvil. Specifically, t is a function of the

completion of Phase I (see Figure 11). However, in specimen diameter and the specimen material, provided

spite of this, the volume contained in the mushroom of that the impact velocities are sufficiently high. A

the recovered specimen is approximately the same as the heuristic argument can be presented which justifies

volume of the Phase I deformation zone at the this conclusion. When the impact press-ires are high

completion of Phase I. .':nfirmation of this fact has enough to cause the radial relief waves to propagate at

been found through a comparison of the volume estimated the same speed, the time for communication with the

by (31) and the volume estimated from the high speed free boundary is constant. The interface time, i, is a

film data at the time when Phase I has just been function of the time for the radial stress waves to
completed. The two agree to within 10%. return from the free surface, reflect from the

specimen/anvil interface, and to interact with the
longitudinal plastic wave front. High pressure
equation of state data such as that presented by Walsh,
Rice, McQueen, and Yarger [11) and Marsh [12) support
this conclusion. The adiabatic compressibility

k ) -1 f V (33)
a 'I [-B-7)s

'1d.... ,.xis nearly constant for a number of important materials.

77 Thus, the rate of propagation of a radial stress wave

// ./r / / /// . is nearly constant for pressures that are

sufficiently high (say, 2-5 CPa). When the specimen
and anvil materials are dissimilar, radially reflected

Figure 11: An exaggerated view of the mushroom stress waves will reflect from the specimen/anvil
geometry (a) at the end of Phase I interface, combine, and propagate longitudinally to
deformation, and (b) the end of the produce an interaction with the plastic wave front that
event. The mushroom suffers separates the two phases. For thirty caliber rods, the
considerable axial compression during time for this interaction will be roughly constant for
Phase I1 deformation, a given material.

Accepting the argument Just...put forward for the

Using the observation in the previous paragraph. interface time 1, we can ow " estimate all of the

we can say that volume contained in the undeformed lengths at the end of Phase I. Then, we can use the
elementary two-phase theory to estimate the stresses

section at t - i is 1A Since the volume contained in and plastic wave speeds for the material during both

0' phases of the deformation.
the mushroom is V, it follows that
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Before turning to the calculations, we describe
the results of three experiments on OFHC copper. The Y (1-k)
data from these experiments will be processed using the 2/- 10
foregoing theory. A complete description of the y2/p.A(1.k)v07k(I-k)v
experimental apparatus and data acquisition techniques 2 0
is contained in Wilson, House. and Nixon (10]. Figure
12 shows the results of the three tests and is 1
published here withr the permission of the authors. All
of the specimens were shot from a 30 caliber gun and q-A(lj) q+÷(l-k) + 2k(l-k) v0

had an undeformed diameter of 7.60 im. In two cases x - (34)
(UK15 and JC30), the specimen aspect ratio was 7.5:1. q+A(-k) q-A(l-k) - 2k(l-k)v
In the ocher case (JC32), the specimen aspect ratio was 0.
5:1. The data in Figure 12 has been reduced from high
speed camera pictures taken during the experiments, and

The Cordin Camera was operated at a rate of 106 (rases
per second during JC30 and JG32. The camera was h R v 0

operated at a rate of 3 x 105 frames per second during tC- " J0 I (tv (35)
UK145. Notice that the trend in the data precisely A " (A÷v)f(v)

reflects the two-phase flow hypothesis. Notice, also.
that the time for transition between the phases is where f is taken from (26) and f(v) is defined in (25).
approximately the same for all three specimens. In the These two equations and (30) comprise the system for

analysis that follows, this time is taken to be the analysis of Phase II deformation. The unknowns are
9 x 1076 sec. V2, A, and k. As mentioned earlier, j - 9 x 1076 sec.

The input data from the post-test measurements is
200 TIC UK-14, JG-30. J-32 given in Table 1.

Iole..o OVHC Copoer
Condbont As Recened (Hall Hord)
PO~s-tOn vs TLe *fA5L e

1.-5••.0 •..*.""":' ':,, ,, ,,. ,.,,. ,
k' 150 Iterface * .t Impact L/D Flan ?I, Undeforlead fr... t~i~

1* 9 h SaVelocity Length anditie
an/* (inch) (inch) (Inch) ( illion)L) ". - _____

.. UKI.|3 189 7.3 164 0.18 0.46.2 03 A. 5* csived
1 0 ... UK-145 PlalOie Wove front 174 7.U 1K49 0.34 0990 1 0 4* leceivedo__ -s UK-145 Interlace Donmele,

.. ..* JG-30 Plaslc Wove Front J.G32 200 5 0 1.092 0.58 0 638 1.0 As I•eoivd

.. ... JG-30 k'ledfoce Diameter,
0 • "lJG-32 P3tWove Vr ot Front
0 .5 . JG-32 interfoce D-ornetl

• •The results of the Phase 11 analysis using (34),
" Plstik Wave Vroni (35), and (30) are given in Table 2. Comparing the

secondary wave speed, these results are in excellent

0.00 _agreement with the experiment.
000 2000. 4000 6000.

Tim e, (j.,) ',As,

Figure 12. Plastic wave motion and radial growth & ,* as P sec M 1111 M
curves for three impact experiments on
OFHC copper. The impact speeds are
roughly the same. Secondary plastic 05143 169 178 3$0 0.247 117 8 094 1702 49 274

flow proceeds with constant wave speed, JG30 176 161 305 0.1 131 1 5 S88 1.575 S0 039

A. The details of these experiments are JG32 200 198 4" 0.292 71 3 9.058 1 900 31 242
contained in (10].

First, we will present the results of the
calculations for Phase II for the three OFHC copper
tests. The Phase II theory is developed by extending
equations (26) and (28) to the interface between the
phases. When this is done, they become

20



A least squares fit to the reduced film data in
Figure 12 for UKIY4S and JG30 gives an experimentally
observed value of 173 a/s for A. Notice that the
calculatad values for the secondary wave speed for
these two tests differ from this experimental value by
less than 70. The average dynamic yield stresses are
calculated to be 350 Ita and 305 MP&, respectively.
These estimates are entirely reasonable. The static
yield stress for this material Is roughly 225 MPa by a
0.21 offset on tension test data.

The difference in the predicted Phase 11 stresses
for UK•4• and JC30 can be attributed to the difference
in average strain rate during Phase 11 deformation.
The terminal time for JG30 is predicted to be about 14
ps longer than UK145. Hence, the average strain rate
must be lower end the dynamic yield stress is
correspondingly lower.

The results for JC32 are also quite acceptable.
The dynamic yield stress estimate in 408 NPa, which
represents an Increase of $1t over static yield. This
is a reasonable conclusion for a 5:1 specimen. The Figure 13. A conpsrison of the theoretical
terminal time Is much shorter (71.3 ps predicted) and prediction for plastic wave front

this means that the average strain rate during position "m a function of time (solid

secondary deformation is much higher. Hence, the curve) with the experimentally observed

higher predicted value for Y2 The secondary plastic position b. The experimental data is
2* from JG30 and the theoretical prediction

wave speed is predicted to be I - 196 m/s. This is is for n - 0.5.
also entirely reasonable.

The Phase I analysis consists of determi- Ing the
exponent n from the equation for the initial particle In Figure 14, the stress-time curve is given.
velocity This calculation has been made by means of equation

(10) with n - 0.5. The result here is quite

u(O) - u - v (1 - n) (36) reasonable. Note that o must be initially unbounded
0 0because n < 1. But, o quickly reaches a value of about

400 HPa at 8 ps. These conclusions are for JG30.
When the initial particle velocity is known, n can be
found from (36).

Having found n, h can be determined from the.

kinematical relation

h -h tn - L-Z -a - L-Z V (37)0 0 -

Since I and i are known, It follows that h can be -

0
found from (37) This means that the wave front motion
is completely determined.

Estimates for the initial particle velocity have
been given by several investigators (e.g Walsh. Rice,
McQueen. and Yarger IlII). Based on their 4 4 "
considerations, we may roughly assume that u0 - v0 /2 rip)

for a copper rod impacting a steel anvil. Using (36).
this leads to n - 1/2. Using this value of n in (37),we can determine h0 Figure 14. The stress-time curve during Phase I

w deformation. This result is from

Having determined h - h(N) during Phase 1, we can equation (11) with n - 0.5. The
compute the stress from (11). the particle veloc' y u post-test data is from Ji30. Although
from (19), and the engineering strain in the mushroom, this stress is compressive, it has been
e, from (20). The strain-rate during mushroom displayed on a positive ordinate for
formation can be found by differentiating e in (20). convenience.
The results of some of these calculations are given in
Figures 13, 14, 15, and 16.

Figure 13 shows the comparison of the predicted As indicated earlier, the strain-rate during Phase
wave front position with the experimental observations I deformation can also be calculated from (20). This
from reduced film data during the early stage of
deformation. The comparison is very favorable, result is presented in Figure 15. For convenience. 0

"has been plotted as a positive ordinate, although it is
negative.
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Pa I:,

shown here Is the result of

differentiating equ,-tion (20) and using figure 17. Comparison between experimentally

the ata rom G30withn - .5.observed muhroom diameter and Phase I
the ate free JG) wi h n 0 . . model prediction (lower solid curve).

The improved estima.te using the frustrum
The results from Figures 14 and 15 can be combined of a cons approximtion is the upper

to F iren 1 n inthrestin -result. Sinc hec stress nd solid curve.
trsin-rate during Phase I deformation. Tre known as
exPlicit fuctions of time, time can be algebreicalth

Note t torm o hifr he iting Fueqatin(a d 1a6g low when compared to the rnduced film data from JG30.
N f th s datafrm .in withe .However, as pointed out in the section on Phase I

deformation, and described in Figure 7, this is to be
rnexpected. An improvement can be achieved by replacing

othe cylindrical cushroon section by the frustrhm of u
t 4 cone with the same volume. This, evidently, reduces

the disparity between theory and experimente but, rs
lise pointed out earlier, even with this improvement, the

toe" results cannot be expected to agree precifely with the

oss. experiment.

m. CONCLUSION

Not The theory presented in the preceding sections and

the supporting experimental evidence hve provided some
"new insight and improved predictive capability for the

ScTaylor test. The ivportant thing to remember Is that

,m. all of this was accomplished without sacrificing much
of the mathematical simplicity of the original Taylor

z , e • ,Itheory [1) or the recent theories proposed by us
;-•'s"(3,6,71.

The new p two-phese theory can be used to explain
Figure 16. Stress/strain-rate diagram as predicted the deficiencies of the elementary theories, For

by the Phase I theory for JC30 and n - example, consider the perfect plasticity theory

0.5. The relationship is nearly linear. proposed by us (3). For the three OF'HC copper tests
dimcussed in the previout section, the elementary,
perfect plasticity theory presented in t3e gives the

The stress/strain-rats diagram shenn ebovi is results in Table 3.
carried out beyond the point ehere it is aeanangful for
copper. However, it is intrresttng to note that the
curve in nearly linear, even while the strain sacrifiin

vartying throughout Phase I. This Interesting fet V iVt

conclusion has been reported in several places for We R74 0/ Dec,.

constant strain (e.g.. see Follenbae and Kocks MD3}.We close this section with one final comparison of th m a l s li of6 12t 1

with the experiment. In Figure 17 ] comparison between Jor0 176 c• 6n6 1t6 6
the diameter growth curve for the mushroom and thee
theoretical predicthon is givensection.0the.eementa
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